technical
 sheet
 Tirak hoists X-300P and X-500P series

ref.: T-428
rev. no.: 1
date: 10/01
page: 1/1

The new Tirak X-300P and X-500P hoists compliment the standard T-500P and T-1000P units, which are designed for manriding applications.

Lighter than the T-series, the X-series are most suited for bosun's chairs, inspection harnesses, one-man cradles and light suspended platforms.

The wire rope passes around a single drive pulley. The gripping of the wire rope around the pulley is achieved by a set of rollers, operated by a compression spring (see the drawing opposite).

	cap. for manriding 1	speed	motor			$\begin{array}{\|c\|} \hline \text { wire } \\ \text { rope } \\ \varnothing 3 \end{array}$	weight of unit	dimensions					
					operating			overal			Tirak mechanism		
			type 2	cap.	factor			a	b	c	d	e	f
modèle	$\begin{gathered} \text { lbs. } \\ \text { (daN/kg) } \end{gathered}$	$\begin{gathered} \hline \mathrm{ft} . / \mathrm{mn} \\ (\mathrm{~m} / \mathrm{mn}) \end{gathered}$	-	kW	\%	$\begin{gathered} \text { in. } \\ (\mathrm{mm}) \end{gathered}$	lbs. (kg)	$\begin{gathered} \text { in. } \\ (\mathrm{mm}) \end{gathered}$	$\begin{aligned} & \text { in. } \\ & (\mathrm{mm}) \end{aligned}$	$\begin{aligned} & \text { in. } \\ & (\mathrm{mm}) \end{aligned}$	$\begin{aligned} & \text { in. } \\ & (\mathrm{mm}) \end{aligned}$	$\begin{gathered} \text { in. } \\ (\mathrm{mm}) \end{gathered}$	$\begin{gathered} \text { in. } \\ (\mathrm{mm}) \end{gathered}$
X-300P	$\begin{gathered} \hline 661 \\ (300) \end{gathered}$	$\begin{aligned} & 27.9 \\ & (8.5) \end{aligned}$	T	0.45	100	$5 / 16$ (8)	$\begin{gathered} 55 \\ (25) \end{gathered}$	$\begin{aligned} & 153 / 4 \\ & (400) \end{aligned}$	$\begin{gathered} 2027 / 32 \\ (250) \end{gathered}$	$\begin{gathered} 825 / 64 \\ (213) \end{gathered}$	$\begin{gathered} 117 / 32 \\ (285) \end{gathered}$	$\begin{gathered} 927 / 32 \\ (250) \end{gathered}$	$\begin{gathered} 223 / 64 \\ (60) \end{gathered}$
X-302P X-301P		$\begin{aligned} & 58.8 \\ & (17) \\ & 27.9 \\ & (8.5) \end{aligned}$	T M	0.9 0.45		$5 / 16$ (8) $5 / 6$ (8)	$\begin{gathered} 55 \\ (25) \\ 57 \\ (26) \\ \hline \end{gathered}$	16 15/16 (430)					
XA-300P	$\begin{gathered} \hline 661 \\ (300) \end{gathered}$	$\begin{aligned} & 13-30 \\ & (4-9) \end{aligned}$	A	-	100	$5 / 16$ (8)	$\begin{gathered} 44 \\ (20) \end{gathered}$	$\begin{gathered} 1325 / 32 \\ (350) \end{gathered}$	$\begin{gathered} 11 \text { 13/16 } \\ (300) \end{gathered}$	$\begin{gathered} \hline 825 / 64 \\ (213) \end{gathered}$	$\begin{gathered} 117 / 32 \\ (285) \end{gathered}$	$\begin{gathered} 927 / 32 \\ (250) \end{gathered}$	$\begin{gathered} 223 / 64 \\ (60) \end{gathered}$
X-500P	$\begin{aligned} & 1,102 \\ & (500) \end{aligned}$	$\begin{aligned} & 30 \\ & \text { (9) } \end{aligned}$	T	0.9	100	$5 / 16$ (8)	$\begin{gathered} 89 \\ (39) \end{gathered}$	$\begin{gathered} 193 / 32 \\ (485) \end{gathered}$	$\begin{gathered} 1111 / 16 \\ (297) \end{gathered}$	$\begin{gathered} 927 / 32 \\ (250) \end{gathered}$	$\begin{gathered} 149 / 16 \\ (370) \end{gathered}$	$\begin{gathered} 1111 / 16 \\ (297) \end{gathered}$	$\begin{gathered} 223 / 64 \\ (60) \end{gathered}$
X-502P		$\begin{gathered} 59 \\ (18) \end{gathered}$	T	1.8		$5 / 16$ (8)	$\begin{gathered} 89 \\ (39) \end{gathered}$	$\begin{aligned} & 191 / 2 \\ & (495) \end{aligned}$					
X-501P		$\begin{aligned} & 30 \\ & \text { (9) } \end{aligned}$	M	0.9		$5 / 16$ (8)	$\begin{gathered} 95 \\ (43) \end{gathered}$	$\begin{gathered} 2015 / 32 \\ (520) \end{gathered}$					
X-520P		30 (9)	T	0.9		$\begin{gathered} 23 / 64 \\ (9) \end{gathered}$	$\begin{gathered} 89 \\ (39) \end{gathered}$	$\begin{gathered} 193 / 32 \\ (485) \end{gathered}$					
X-522P		$\begin{gathered} 59 \\ (18) \end{gathered}$	T	1.8		$\begin{gathered} 23 / 64 \\ (9) \end{gathered}$	$\begin{gathered} 89 \\ (39) \end{gathered}$	$\begin{aligned} & 191 / 2 \\ & (495) \end{aligned}$					
X-521P		$\begin{aligned} & 30 \\ & \text { (9) } \\ & \hline \end{aligned}$	M	0.9		$\begin{gathered} 23 / 64 \\ (9) \\ \hline \end{gathered}$	$\begin{gathered} 89 \\ (43) \\ \hline \end{gathered}$	$\begin{gathered} 2015 / 32 \\ (520) \\ \hline \end{gathered}$					
XA-500P	$\begin{aligned} & 1,102 \\ & (500) \end{aligned}$	$\begin{aligned} & 13-30 \\ & (4-9) \end{aligned}$	A	-	100	$\begin{gathered} 5 / 16 \\ (8) \end{gathered}$	$\begin{gathered} 77 \\ (35) \end{gathered}$	$\begin{aligned} & 153 / 4 \\ & (400) \end{aligned}$	$\begin{gathered} 1111 / 16 \\ (297) \end{gathered}$	$\begin{gathered} 927 / 32 \\ (250) \end{gathered}$	$\begin{gathered} 149 / 16 \\ (370) \end{gathered}$	$\begin{gathered} 1111 / 16 \\ (297) \end{gathered}$	$\begin{gathered} 2 \text { 23/64 } \\ (60) \end{gathered}$

1) The capacities indicated for manriding are calculated on the effective breaking strength of the wire rope (safety factor of 6). For countries which require higher safety standards, the manriding capacity should be calculated on this basis, with the knowledge that the effective breaking stregth is $4,800 \mathrm{~kg}$ for the $\varnothing 8 \mathrm{~mm}$ and $6,800 \mathrm{~kg}$ for the $\varnothing 9 \mathrm{~mm}$ wire rope.
2) $\mathrm{T}=3$-phase $220 / 380 \mathrm{~V}, 50 \mathrm{~Hz}, 1,500 \mathrm{rpm}(9 \mathrm{~m} / \mathrm{mn})$ or $3,000 \mathrm{rpm}(18 \mathrm{~m} / \mathrm{mn})$.
$M=$ Single phase $220 \mathrm{~V}, 50 \mathrm{~Hz}, 1,500 \mathrm{rpm}$.
Other voltages are available.
$\mathrm{A}=$ pneumatic motor, 6 bar air pressure. Air consumption: $0.75 \mathrm{~m}^{3} / \mathrm{mn}$ (XA-300P) and $1.5 \mathrm{~m}^{3} / \mathrm{mn}$ (XA-500P).
3) Effective breaking strain:
for $\varnothing 8 \mathrm{~mm}$ wire rope $=4,800 \mathrm{~kg}$;
for $\varnothing 9 \mathrm{~mm}$ wire rope $=6,800 \mathrm{~kg}$.

